|   | CED = 4x                                  |            | may be on diagram                                 |
|---|-------------------------------------------|------------|---------------------------------------------------|
|   | or                                        | M1         |                                                   |
|   | ACB = 180 - y - (90 - x)                  |            |                                                   |
|   | CED = 4x                                  |            | may be on diagram                                 |
|   | and $DCE = \frac{180 - 4x}{2}$            |            |                                                   |
|   | or                                        | M1dep      |                                                   |
|   | ACB = 180 - y - (90 - x)                  |            | allow DCE = ACB for                               |
|   | and $DCE = 180 - y - (90 - x)$            |            | DCE = 180 - y - (90 - x)                          |
|   | M2 seen                                   |            | M2 seen                                           |
|   | and                                       |            | and                                               |
|   | $y + 90 - x + \frac{180 - 4x}{2} = 180$   |            | 2(180 - y - (90 - x)) + 4x = 180                  |
|   | and                                       |            | and $y = 3x$                                      |
| 1 | y = 3x                                    |            | y = 3x                                            |
| ' | or                                        | A1         |                                                   |
|   | M2 seen                                   |            |                                                   |
|   | and                                       |            |                                                   |
|   | $\frac{180 - 4x}{2} = 180 - y - (90 - x)$ |            |                                                   |
|   | and                                       |            |                                                   |
|   | y = 3x                                    |            |                                                   |
|   | M2A1 seen                                 |            | eg                                                |
|   | and                                       |            | alt(ernate) seg(ment theorem)                     |
|   | all reasons given                         |            | and                                               |
|   |                                           | <b>A</b> 1 | (base angles of) isos(celes) triangle (are equal) |
|   |                                           |            | and                                               |
|   |                                           |            | (vertically) opp(osite) angles (are equal) and    |
|   |                                           |            | angles in a triangle (sum to 180°)                |

|        | Additional Guidance                                               |      |
|--------|-------------------------------------------------------------------|------|
|        | Allow CE = DE for the reason                                      |      |
|        | (base angles of) isos(celes) triangle (are equal)                 |      |
|        | Allow $90 - y + x$ or $180 - y - 90 + x$ for $180 - y - (90 - x)$ |      |
|        | Allow $90 - 2x$ for $\frac{180 - 4x}{2}$                          |      |
| 1 cont | Allow clear indication of angles                                  |      |
|        | eg                                                                |      |
|        | allow E for CED                                                   |      |
|        | do not allow C for ACB unless seen on diagram                     |      |
|        | Assuming $y = 3x$                                                 | Zero |
|        | For 1st A1, allow equivalent equations                            |      |
|        | eg For $2(180 - y - (90 - x)) + 4x = 180$ allow                   |      |
|        | 2(180 - y - (90 - x)) = 180 - 4x                                  |      |

| Q | Answer                                                     | Mark  | Comments                              |
|---|------------------------------------------------------------|-------|---------------------------------------|
|   |                                                            |       |                                       |
|   | OBD and OCD are right angles and BOC (obtuse) = 180 - x    | M1    | may be on diagram                     |
|   | $BAC = 90 - \frac{x}{2}$                                   | M1dep | oe<br>may be on diagram               |
|   | BOC (reflex) = 180 + x and                                 |       |                                       |
|   | $ABO + ACO = 360 - (90 - \frac{x}{2} + 180)$               |       | oe $360 - 90 + \frac{x}{2} - 180 - x$ |
| 2 | + x) or $90 - \frac{x}{2}$ and                             | A1    |                                       |
|   | $ABO = \frac{1}{2}(90 - \frac{x}{2})$                      |       |                                       |
|   | $=45-\frac{x}{4}$                                          |       |                                       |
|   | with M2 scored                                             |       |                                       |
|   | All reasons given                                          |       |                                       |
|   | tangent meets the radius at 90°                            |       |                                       |
|   | angles in a quadrilateral add up to 360°                   | A1    |                                       |
|   | angle at the circumference is half the angle at the centre |       |                                       |
|   | angles around a point add to 360°                          |       |                                       |

| Q         | Answer                                                                                                                                                                                                   | Mark  | Comments                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------|
|           |                                                                                                                                                                                                          |       |                         |
|           | OBD and OCD are right angles and BOC (obtuse) = 180 - x                                                                                                                                                  | M1    | may be on diagram       |
|           | $BAC = 90 - \frac{x}{2}$                                                                                                                                                                                 | M1dep | oe<br>may be on diagram |
| 2<br>cont | BOC (reflex) = 180 + $x$<br>and<br>$BAD = \frac{1}{2}(90 - \frac{x}{2})$ or $45 - \frac{x}{4}$<br>and<br>$ABO = 180 - (45 - \frac{x}{4}) - (90 + \frac{x}{2})$<br>= $45 - \frac{x}{4}$<br>with M2 scored | A1    |                         |
|           | All reasons given tangent meets the radius at 90° angles in a quadrilateral add up to 360° angle at the circumference is half the angle at the centre angles in a triangle add up to 180°                | A1    |                         |

| Q         | Answer                                                                                | Mark  | Comments                |
|-----------|---------------------------------------------------------------------------------------|-------|-------------------------|
|           | Alternative method 3                                                                  |       |                         |
|           | OBD and OCD are right angles and BOC (obtuse) = 180 - x                               | M1    | may be on diagram       |
|           | $BAC = 90 - \frac{x}{2}$                                                              | M1dep | oe<br>may be on diagram |
|           | $ABC = \frac{1}{2} \left[ 180 - (90 - \frac{x}{2}) \right]$                           |       |                         |
|           | $=45+\frac{x}{4}$                                                                     |       |                         |
|           | and $OBC = \frac{1}{2} [180 - (180 - x)]$                                             |       |                         |
| 2<br>cont | $=\frac{x}{2}$                                                                        | A1    |                         |
| 00111     | and                                                                                   |       |                         |
|           | $ABO = 45 + \frac{x}{4} - \frac{x}{2}$                                                |       |                         |
|           | $=45-\frac{x}{4}$                                                                     |       |                         |
|           | with M2 scored                                                                        |       |                         |
|           | All reasons given tangent meets the radius at 90° angles in a quadrilateral add up to |       |                         |
|           | 360° angle at the circumference is half the angle at the centre                       | A1    |                         |
|           | angles in a triangle add up to 180°                                                   |       |                         |
|           | (base angles in an) isosceles triangle (are equal)                                    |       |                         |

| Q         | Answer                                                                                                                                                                                                                                                                                                     | Mark  | Commer            | nts      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|----------|
|           | Alternative method 4                                                                                                                                                                                                                                                                                       |       |                   |          |
|           | <i>OBD</i> is a right angle and $BDO = \frac{x}{2}$                                                                                                                                                                                                                                                        | M1    | may be on diagram |          |
|           | $BOD = 90 - \frac{x}{2}$                                                                                                                                                                                                                                                                                   | M1dep | may be on diagram |          |
| 2<br>cont | $OAB + ABO = 90 - \frac{x}{2}$ and $ABO = 45 - \frac{x}{4}$ with M2 scored                                                                                                                                                                                                                                 | A1    |                   |          |
|           | All reasons given tangent meets the radius at 90° the diagram is symmetrical oe angles in a triangle add up to 180° exterior angle of a triangle is equal to the sum of the opposite interior angles  OA and OB are radii, so triangle ABO is isosceles (base angles in an) isosceles triangle (are equal) | A1    |                   |          |
|           | Additional Guidance                                                                                                                                                                                                                                                                                        |       |                   |          |
|           | Using a value for x                                                                                                                                                                                                                                                                                        |       |                   | M0M0A0A0 |

| Q | Answer                                                 | Mark      | Comments                                |  |  |
|---|--------------------------------------------------------|-----------|-----------------------------------------|--|--|
|   | Alternative method 1 – using angle                     | es around | O and angles inside arrowhead           |  |  |
|   | ACO = 90 - 83 or ACO = 7                               | M1        | may be seen on diagram                  |  |  |
|   | Acute $BOC = 2 \times 28$<br>or acute $BOC = 56$       | M1        | may be seen on diagram                  |  |  |
|   | Reflex $BOC = 360$ – their 56<br>or reflex $BOC = 304$ | M1dep     | may be seen on diagram<br>dep on 2nd M1 |  |  |
|   | ABO = 360 – their 304 – their 7 – 28<br>or<br>ABO = 21 | M1dep     | may be seen on diagram<br>dep on M3     |  |  |
| 3 | ABO = 21 and $ACO = 7and 21:7=3:1$                     | A1        | all angle values must be seen           |  |  |
| 3 | Alternative method 2 – with line <i>OA</i> added       |           |                                         |  |  |
|   | ACO = 90 - 83 or $ACO = 7$                             | M1        | may be seen on diagram                  |  |  |
|   | OAC = 7<br>or<br>ABO + ACO = 28                        | M1dep     | may be seen on diagram                  |  |  |
|   | OAB = 28 - 7 or $OAB = 21orABO = 28 - 7$               | M1dep     | may be seen on diagram<br>dep on M2     |  |  |
|   | ABO = 21                                               | M1dep     | may be seen on diagram<br>dep on M3     |  |  |
|   | ABO = 21 and $ACO = 7and 21:7=3:1$                     | A1        | all angle values must be seen           |  |  |

| Q         | Answer                                                 | Mark  | Comments                                         |  |  |
|-----------|--------------------------------------------------------|-------|--------------------------------------------------|--|--|
|           | Alternative method 3 – using alternate segment theorem |       |                                                  |  |  |
|           | ACO = 90 - 83 or ACO = 7                               | M1    | may be seen on diagram                           |  |  |
|           | Acute $BOC = 2 \times 28$<br>or acute $BOC = 56$       | M1    | may be seen on diagram                           |  |  |
|           | ABC = 83                                               | M1    | may be seen on diagram                           |  |  |
| 3<br>cont | $OBC = \frac{180 - \text{their } 56}{2}$               |       | may be seen on diagram,<br>dep on 2nd and 3rd M1 |  |  |
|           | or OBC = 62<br>and<br>ABO = 83 - their 62 or ABO = 21  | M1dep |                                                  |  |  |
|           | ABO = 21 and ACO = 7<br>and 21:7 = 3:1                 | A1    | all angle values must be seen                    |  |  |

| Q         | Answer                                                                                                                                                                                             | Mark  | Commer                                            | nts        |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------|------------|--|
|           | Alternative method 4 – using triangles OBC and ABC                                                                                                                                                 |       |                                                   |            |  |
|           | ACO = 90 - 83 or ACO = 7                                                                                                                                                                           | M1    | may be seen on diagran                            | n          |  |
|           | Acute BOC = 2 × 28<br>or acute BOC = 56                                                                                                                                                            | M1    | may be seen on diagran                            | n          |  |
|           | $OBC = \frac{180 - \text{their } 56}{2}$ or $OBC = 62$                                                                                                                                             | M1dep | may be seen on diagram or angle OCB dep on 2nd M1 |            |  |
| 3<br>cont | ABO = 180 - 28 - 62 - 62 - 7<br>or $ABO = 21$                                                                                                                                                      | M1dep | oe<br>may be seen on diagran<br>dep on M3         | n          |  |
|           | ABO = 21 and ACO = 7<br>and 21:7 = 3:1                                                                                                                                                             | A1    | all angle values must be                          | seen       |  |
|           | Additional Guidance                                                                                                                                                                                |       |                                                   |            |  |
|           | If angles are not correctly positioned on the diagram they must be correctly identified in the working, eg $BOC = 56$ is M0 if not correctly positioned on the diagram and not identified as acute |       |                                                   |            |  |
|           | ACO = 7 and ABO : ACO = 21 : 7 with no other correct working                                                                                                                                       |       |                                                   | M1M0M0M0A0 |  |

| Q    | Answer                                                           | Mark | Comments |  |  |
|------|------------------------------------------------------------------|------|----------|--|--|
|      | 65                                                               | B1   |          |  |  |
| 4(a) | 4(a) Additional Guidance                                         |      |          |  |  |
|      | 65 unambiguously linked to $x$ on diagram with answer line blank |      |          |  |  |
|      |                                                                  |      |          |  |  |
| Q    | Answer Mark Comments                                             |      |          |  |  |
|      | It is greater than the answer to part (a)                        | B1   |          |  |  |
| 4(b) | Additional Guidance                                              |      |          |  |  |
|      |                                                                  |      |          |  |  |

| Q    | Answer                                                                          | Mark                                                | Comments |     |
|------|---------------------------------------------------------------------------------|-----------------------------------------------------|----------|-----|
|      | No and valid statement B1 eg no it is angle ACD that is 70°                     |                                                     |          | 70° |
|      | Ad                                                                              | ditional C                                          | Guidance |     |
|      | Angles may be seen on the diagram                                               |                                                     |          |     |
|      | No may be implied                                                               |                                                     |          |     |
|      | eg1 angle ADC is not 70                                                         |                                                     |          | B1  |
|      | eg2 angle y is 55                                                               |                                                     |          | B1  |
|      | Allow unambiguous indication of angle                                           | les                                                 |          |     |
|      | eg $y$ and $D$ are both 55 so he is wron                                        | g                                                   |          | B1  |
|      | No and angle $ADC = 55^{\circ}$ y is not 70 so no  No, neither angle is correct |                                                     |          |     |
| 4(c) |                                                                                 |                                                     |          |     |
|      |                                                                                 |                                                     |          |     |
|      | No, he thinks AB and DC are parallel                                            |                                                     |          | B1  |
|      | No, he's used alternate angles                                                  |                                                     |          | B1  |
|      | It should say alternate angles (no in                                           | nplied)                                             |          | B1  |
|      | He has made mistakes                                                            |                                                     |          | B0  |
|      | He used the alternate segment theore                                            | em incorr                                           | ectly    | B1  |
|      | Ignore irrelevant working but do not ignore incorrect working                   |                                                     |          |     |
|      | eg No it is angle ACD that is 70° and                                           | eg No it is angle ACD that is 70° and angle y is 65 |          |     |
|      | Responses saying he is correct                                                  |                                                     |          | В0  |

| Q | Answer                                                                | Mark  | Comment                                            |  |  |
|---|-----------------------------------------------------------------------|-------|----------------------------------------------------|--|--|
|   | Alternative method 1                                                  |       |                                                    |  |  |
|   | RPQ = y                                                               | M1    | may be seen on diagram                             |  |  |
|   | RPQ = y                                                               |       | may be seen on diagram                             |  |  |
|   | and                                                                   | M1dep |                                                    |  |  |
|   | RQP = 180 - 2y                                                        |       |                                                    |  |  |
|   | RQP = 2x                                                              |       | RQP = 2x may be implied by 'alternate              |  |  |
|   | and                                                                   |       | segment theorem'                                   |  |  |
|   | 2x = 180 - 2y                                                         | A1    |                                                    |  |  |
|   | and correct rearrangement to                                          |       |                                                    |  |  |
|   | y = 90 - x                                                            |       |                                                    |  |  |
|   | with M1M1 awarded                                                     |       |                                                    |  |  |
|   | Correct reasons given with M1M1 scored and a correct initial equation | B1    | (base angles of an) isosceles triangle (are equal) |  |  |
| 5 | for the A mark                                                        |       | sum of the angles in a triangle is 180°            |  |  |
|   |                                                                       |       | alternate segment (theorem)                        |  |  |
|   | Alternative method 2                                                  |       |                                                    |  |  |
|   | RPQ = y                                                               | M1    | may be seen on diagram                             |  |  |
|   | RQP = 2x                                                              | M1    | may be seen on diagram                             |  |  |
|   | 2x + 2y = 180                                                         |       |                                                    |  |  |
|   | and correct rearrangement to                                          | A1    |                                                    |  |  |
|   | y = 90 - x                                                            | ///   |                                                    |  |  |
|   | with M1M1 awarded                                                     |       |                                                    |  |  |
|   | Correct reasons given with M1M1 scored and a correct initial equation |       | (base angles of an) isosceles triangle (are equal) |  |  |
|   | for the A mark                                                        | B1    | alternate segment (theorem)                        |  |  |
|   |                                                                       |       | sum of the angles in a triangle is 180°            |  |  |

|             | Alternative method 3                                                                         |       |                                                                                                                             |   |  |
|-------------|----------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|---|--|
|             | RQP = 2x                                                                                     | M1    | may be seen on diagran                                                                                                      | n |  |
| 5<br>(cont) | RQP = 2x and $RPQ = 180 - 2x - y$                                                            | M1dep | may be seen on diagran                                                                                                      | n |  |
|             | y = 180 - 2x - y<br>and correct rearrangement to<br>y = 90 - x<br>with M1M1 awarded          | A1    |                                                                                                                             |   |  |
|             | Correct reasons given with M1M1 scored and a correct initial equation for the A mark         | B1    | alternate segment theorem sum of the angles in a triangle is 180° (base angles of an) isosceles triangle (are equal)        |   |  |
|             | Alternative method 4                                                                         |       |                                                                                                                             |   |  |
|             | RPQ = y                                                                                      | M1    | may be seen on diagram                                                                                                      |   |  |
|             | SP extended to $T$ and $QPT = y$                                                             | M1    | may be seen on diagran<br>any or no letter for <i>T</i>                                                                     | n |  |
|             | 2x + 2y = 180<br>and correct rearrangement to<br>y = 90 - x<br>with M1M1 awarded             | A1    |                                                                                                                             |   |  |
|             | Correct reasons given with M1M1 scored and a correct initial equation for the A mark         | B1    | (base angles of an) isosceles triangle<br>(are equal)<br>alternate segment theorem<br>angles on a straight line sum to 180° |   |  |
|             | Additional Guidance                                                                          |       |                                                                                                                             |   |  |
|             | Method marks can be scored using angle notation<br>eg $RPQ = QRP$ is equivalent to $RPQ = y$ |       |                                                                                                                             |   |  |

|   | Answer                                   | Mark | Comment                                                        |  |  |
|---|------------------------------------------|------|----------------------------------------------------------------|--|--|
|   | BOD = 2 × 32 or 64                       | M1   | oe eg BOC = 64<br>may be seen on diagram                       |  |  |
|   | OBD = 90                                 | M1   | may be seen on diagram or implied by further working or answer |  |  |
| 6 | 26                                       | A1   |                                                                |  |  |
|   | Additional Guidance                      |      |                                                                |  |  |
|   | 90 can be implied by a square angle sign |      |                                                                |  |  |
|   | 180 – 154 implies M1M1                   |      |                                                                |  |  |

| Q | Answer                                                                        | Mark  | Comments                                                                                |  |  |
|---|-------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|--|--|
|   | Alternative method 1: drawing AO and BO and sum of angles in a quadrilateral  |       |                                                                                         |  |  |
|   | PBO = 90<br>or<br>PAO = 90                                                    | M1    | may be seen on diagram or implied by subsequent working accept rectangle drawn at angle |  |  |
|   | 360 – 90 – 90 – 24<br>or<br>156                                               | M1dep | oe eg 180 – 24 or 90 – 12<br>may be seen on diagram                                     |  |  |
|   | 78                                                                            | A1    |                                                                                         |  |  |
|   | Alternative method 2: drawing AO and BO and using circle theorems             |       |                                                                                         |  |  |
|   | AOB = 2x                                                                      | M1    | may be seen on diagram                                                                  |  |  |
|   | 2x = 156                                                                      | M1dep |                                                                                         |  |  |
|   | 78                                                                            | A1    |                                                                                         |  |  |
|   | Alternative method 3: drawing AB, sum of angles in a triangle and alt segment |       |                                                                                         |  |  |
| 7 | 2PAB + 24 = 180<br>or<br>2PBA + 24 = 180                                      | M1    |                                                                                         |  |  |
|   | (180 – 24) ÷ 2 or 78<br>or<br>(180 – 24) ÷ 2 or 78                            | M1dep | may be seen on diagram                                                                  |  |  |
|   | x = 78                                                                        | A1    |                                                                                         |  |  |
|   | Alternative method 4: drawing PO and AO or BO and sum of angles in a triangle |       |                                                                                         |  |  |
|   | PBO = 90<br>or<br>PAO = 90                                                    | M1    | may be seen on diagram or implied by subsequent working accept rectangle drawn at angle |  |  |
|   | 180 – 90 – 12<br>or<br>78                                                     | M1dep | oe eg 90 – 12<br>may be seen on diagram                                                 |  |  |
|   | 78                                                                            | A1    |                                                                                         |  |  |

| Q         | Answer                                | Mark | Comments |        |
|-----------|---------------------------------------|------|----------|--------|
| 7<br>cont | Additional Guidance                   |      |          |        |
|           | Answer 78                             |      |          | M1M1A1 |
|           | Working takes precedence over diagram |      |          |        |